#
In a reply to a question about the sorites paradox, Professor Maitzen writes:
"Logic requires there to be a sharp cutoff in between those clear cases -- a line that separates having enough leaves to be a head of lettuce from having too few leaves to be a head of lettuce. Or else there couldn't possibly be heads of lettuce."
However, there is no justification that clearly leads from his premise to his conclusion: obviously we can have heaps of sand without knowing exactly how many grains of sand are required to distinguish a "heap" from a pile of individual sand grains, or else there would not be a so-called "paradox" in the first place!
The premise as he presents it sounds like a tautology, not a logical argument. What makes a "heap" of sand is not only how many grains of sand there are, but also how those grains are arranged. If you took a "heap" of sand and stretched it out in a line, you would have the same number of grains, but it would no longer be a "heap." You could take a head of lettuce...

In a reply to a question about the sorites paradox, Professor Maitzen writes:
"Logic requires there to be a sharp cutoff in between those clear cases -- a line that separates having enough leaves to be a head of lettuce from having too few leaves to be a head of lettuce. Or else there couldn't possibly be heads of lettuce."
However, there is no justification that clearly leads from his premise to his conclusion: obviously we can have heaps of sand without knowing exactly how many grains of sand are required to distinguish a "heap" from a pile of individual sand grains, or else there would not be a so-called "paradox" in the first place!
The premise as he presents it sounds like a tautology, not a logical argument. What makes a "heap" of sand is not only how many grains of sand there are, but also how those grains are arranged. If you took a "heap" of sand and stretched it out in a line, you would have the same number of grains, but it would no longer be a "heap." You could take a head of lettuce...

Response from Stephen Maitzen on :

What makes a "heap" of sand is not only how many grains of sand there are, but also how those grains are arranged. If you took a "heap" of sand and stretched it out in a line, you would have the same number of grains, but it would no longer be a "heap."
Agreed! Even so, there must be a sharp cutoff between (a) enough grains to make a heap of sand if they're arranged properly and (b) too few grains to make a heap of sand no matter how they're arranged. An instance of (a) would be 1 billion; an instance of (b) would be 1.
Why must there be a sharp cutoff between (a) and (b)? Because otherwise (a) can be shown to apply to 1 (which clearly it doesn't) or (b) can be shown to apply to 1 billion (which clearly it doesn't). That's what the sorites argument shows.
...obviously we can have heaps of sand without knowing exactly how many grains of sand are required to distinguish a "heap" from a pile of individual sand grains, or else there would not be a so-called "paradox" in the first place!
You seem...